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Abstract 0 This paper describes the derivation of a simple QSAR
model for the prediction of log BB from a set of 55 diverse organic
compounds. The model contains two variables: polar surface area
(PSA) and calculated logP, both of which can be rapidly computed.
It therefore permits the prediction of log BB for large compound sets,
such as virtual combinatorial libraries. The performance of this QSAR
on two test sets taken from the literature is illustrated and compared
with results from other reported computational approaches to log BB
prediction.

Introduction
The blood-brain barrier (BBB) is a complex cellular

system whose purpose is to maintain the homeostasis of
the central nervous system (CNS) by separating the brain
from the systemic blood circulation.1 In drug discovery, it
is important to determine whether a candidate molecule
is capable of penetrating the BBB. For drugs targeted at
the CNS, BBB penetration is a necessity (unless invasive
or intranasal delivery routes are being considered2), whereas
for drugs aimed at other sites of action, passage through
the BBB may lead to unwanted side-effects.

A common measure of the degree of BBB penetration is
the ratio of the steady-state concentrations of the drug
molecule in the brain and in the blood, usually expressed
as log(Cbrain/Cblood) or, more simply, log BB. Experimental
values of log BB published to date cover the range about
-2.00 to +1.00. Within this range, compounds with log BB
> 0.3 cross the BBB readily, while compounds with log BB
< -1.0 are only poorly distributed to the brain.3 The
determination of log BB is difficult and time-consuming,
requiring animal experiments and the synthesis (some-
times in radiolabeled form) of the compounds to be tested.
Although in vitro4 and artificial membrane-based methods5

for studying BBB penetration are being developed, it would
be desirable if log BB could be predicted computationally
with enough accuracy to allow the early rejection of
unsuitable candidates.

In this paper, we review existing computational ap-
proaches for the prediction of log BB and then describe the
derivation and validation of a novel, simple QSAR (quan-
titative structure-activity relationship) model allowing the
rapid and accurate prediction of blood-brain barrier pen-
etration.

QSAR Models for log BB PredictionsThe first purely
computational approach to log BB prediction was that of

Kansy and van de Waterbeemd6 who developed the follow-
ing QSAR from a set of 20 compounds taken from the work
of Young et al.:7

where PSA is the polar surface area, Mol•Vol is the
molecular volume, n is the number of compounds, r is the
correlation coefficient, s is the standard error, and F is the
Fisher value, a measure of the statistical significance of
the equation. The standard errors of the correlation coef-
ficients are given in parentheses.

However, subsequent application of this equation to
compounds outside its training set showed it to be poorly
predictive,8 suggesting that the 20 compound training set
was insufficient to derive a generally applicable QSAR for
predicting log BB.9 Thus, Abraham and co-workers9 con-
structed a larger training set of 65 compounds from which
(after the removal of various outliers) they derived the
following two models which they denoted ACM-II and log
Pplus, respectively:10

No standard errors of the correlation coefficients were
given for eq 3.10 In both of these equations, the various
parameters (excepting the experimental quantity, log Poct)
are solute descriptors, specifically: R2 is an excess molar
refraction, π2

H is a dipolarity/polarizability parameter, ΣR2
H

and Σâ2
H are the solute hydrogen-bond acidity and basicity,

respectively, and Vx is the characteristic volume of McGow-
an.11

There are a number of difficulties when applying either
of these equations to more than a handful of compounds.
First, to estimate log BB using either of these equations,
it is necessary to calculate a value for each of the descrip-
tors for the compound in question. The descriptor values
in turn are calculated by summing the contributions from
the molecule’s constituent fragments. While research is
ongoing to automate this process, at present, manual
calculations require several minutes (at least) to make an
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log BB ) -0.021((0.003)PSA -
0.003((0.001)Mol•Vol + 1.643((0.465) (1)

n ) 20, r ) 0.835, s ) 0.448, F ) 19.5

log BB ) -0.038((0.064) + 0.198((0.100)R2 -

0.687((0.125)π2
H - 0.715((0.334)ΣR2

H -

0.698((0.107)Σâ2
H + 0.995((0.096)Vx (2)

n ) 57, r ) 0.952, s ) 0.197, F ) 99.2

log BB ) +0.055 + 0.023 log Poct -

0.507ΣR2
H - 0.500Σâ2

H (3)

n ) 49, r ) 0.949, s ) 0.201, F ) 136.1
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appropriate dissection of the molecule under study and
retrieve the relevant fragment values. If values for a
particular fragment cannot be found, they must be calcu-
lated. Equation 3, while more compact, requires experi-
mental values for the partition coefficient log Poct, although
it is conceivable that computed estimates of log P could be
substituted for this quantity. Finally, a close examination
of the descriptor values used to construct eq 2 reveals that
a number of the descriptors are very highly correlated (the
pairs R2 and π2

H, R2 and Σâ2
H, R2 and Vx, π2

H and Σâ2
H,

and π2
H and Vx are all correlated with r > 0.9). Such

collinearity among the descriptors may cause the regression
coefficients to become unreliable.12 For these reasons,
although the above equations appear statistically impres-
sive, other approaches have been sought.

Lombardo et al.13 started with a set of 57 compounds
drawn from the Abraham training set9 mentioned above.
Detailed conformational analyses and semiempirical cal-
culations were used to arrive at this simple model, denoted
here as LBC, which omits two outliers from the original
set of 57 compounds:

where ∆Go
W is the computed free energy of solvation of a

compound in water. As described by Lombardo et al., the
determination of this quantity is rather computationally
expensive, making this approach unsuitable for screening
large numbers of compounds. However, recent work has
led to faster methods for the calculation of solvation free
energies.14

Most recently, Norinder and co-workers15 have developed
models for log BB prediction using their computed MolSurf
parameters together with statistical analysis by the Partial
Least Squares to Latent Structures (PLS) method. The
model from their work with the largest training set (56
compounds - model 2 in ref 15, denoted here as NSO)
contained three significant PLS components with the
following statistics: n ) 56, r ) 0.913, s ) 0.312, F ) 86.95.
Here again, however, the computational methods employed
required conformational analysis and computationally
intensive semiempirical and ab initio calculations which
render the approach too slow for high-throughput applica-
tions.

In what follows, we describe the derivation of a simple
QSAR model for the prediction of log BB that is automatic
and rapid to calculate and therefore applicable to the
screening of large compound sets, such as virtual combi-
natorial libraries. The performance of this QSAR on two
test sets taken from the literature will be illustrated and
compared with the methods above where such results are
available.

Computational MethodssTraining SetsA set of 57
compounds previously studied by Lombardo et al.13 was
used as a training set. These compounds are illustrated in
Figure 1 and listed in Table 1 along with experimental log
BB values taken from ref 13.

Test Set 1sThis set consists of the seven compounds
(shown in Figure 2) used as a test set by Abraham et al.10

The experimental log BB values listed in Table 2 for these
compounds were taken from ref 10 as were the predicted
log BB values from eqs 2 and 3.

Test Set 2sThis test set was used by Lombardo et al.13

and also by Norinder et al.15 It comprises six compounds
whose structures are shown in Figure 3. Table 3 shows the
log BB values from the various equations and experiment.

Polar Surface Area CalculationssPSA values for the
molecules under study were calculated using the methods
described in the previous paper.16

Calculations of log PsTwo computational methods for
logP prediction were used. ClogP was calculated using the
Daylight software.17 MlogP values were computed using
an implementation of the method developed by Moriguchi
et al.18 encoded in the Sybyl Programming Language and
executed within the Sybyl Molecular Modeling package.19

Regression AnalysissAll multiple linear regressions
were carried out within the Tsar program.20

Results
Training SetsDespite the limitations found with the

Kansy and van de Waterbeemd approach,6 we decided to
investigate the possibility of using PSA values to derive a
generally applicable QSAR for log BB. Starting from the
57 compounds used by Lombardo et al.,13 we first tried
correlating PSA with log BB and obtained the following
equation:

This initial result was encouraging and, incidentally,
suggested a relationship between PSA and ∆Go

W. An
investigation showed the two quantities were indeed closely
correlated (r ) 0.962). However, a purely PSA-based model
failed to distinguish the varying BBB-penetrating abilities
of nonpolar compounds. For example, benzene and 3-me-
thylpentane have log BB values of -0.69 and 2.01 respec-
tively, but both have a PSA of zero. Thus, we began to
search for an additional descriptor that would differentiate
between the nonpolar compounds in the set. Molecular
weight, molecular volume, and nonpolar surface area were
tried, but none led to a significant improvement in the
model.21 Finally, calculated logP values were tried with
more success generating a model we denote DEC-I:

where ClogP is the calculated logP.17 The two compounds
omitted from the original set of 57 were N2, for which ClogP
cannot calculate an accurate value, and compound 12
which, if included in the model, shows an error of 1.5 log
units in the prediction of its experimental log BB value
(data not shown). Compound 12 has also been found to be
an outlier by other groups.13,15 One difficulty with using
ClogP values is that there are compounds for which it
cannot generate accurate values. For this reason, some
workers22 have proposed the use of the MlogP18 approach
in such circumstances. If MlogP values are substituted for
ClogP values, the following model (DEC-II) is generated:

To allow a direct comparison of these two equations with
a purely PSA-based model, eq 5 was rederived based on
the same 55 compounds as were used in the derivation of
eqs 6 and 7 giving:

When the statistics are compared, eqs 6 and 7 show
superior r and s values to eq 8, and the F values for the
three equations indicate that all are significant at the 95%

log BB ) 0.054((0.005)∆Go
W + 0.43((0.07)

n ) 55, r ) 0.82, s ) 0.41, F ) 108.3
(4)

log BB ) -0.016((0.001)PSA + 0.547((0.050)
n ) 57, r ) 0.819, s ) 0.455, F ) 112.4

(5)

log BB ) -0.0148((0.001)PSA +
0.152((0.036)ClogP + 0.139((0.073) (6)

n ) 55, r ) 0.887, s ) 0.354, F ) 95.8

log BB ) -0.0145((0.001)PSA +
0.172((0.022)MlogP + 0.131((0.033) (7)

n ) 55, r ) 0.876, s ) 0.369, F ) 86.0

log BB ) -0.0156((0.001)PSA + 0.548((0.048)
n ) 55, r ) 0.841, s ) 0.410, F ) 128.4

(8)
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Figure 1sCompounds 1−30 and less familiar compounds from the training set.
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confidence level. It is apparent that the inclusion of a
calculated log P value has improved the model for log BB
prediction. Thus, eqs 6 and 7 were preferred for log BB
prediction over the simple PSA-based model of eq 8.

The quantities comprising eqs 6 and 7 are rapidly
calculable, and, furthermore, the descriptors involved are
not significantly correlated with one another: the correla-
tion coefficient r being 0.15 for PSA and ClogP, and 0.23
for PSA and MlogP. The predicted log BB values from eqs
6 and 7 are tabulated in Table 1, and plots of computed
versus experimental values are shown in Figure 4. How-

ever, the real test of any QSAR equation is how well it
predicts values for compounds outside its training set.
Accordingly, we have applied our equations to two test sets
that are available in the literature.

Test Set 1sLooking at Table 2, if all seven compounds
are considered, the mean absolute errors in the log BB
predictions are: ACM-II: 0.30, log Pplus: 0.54, DEC-I:
0.37 and DEC-II: 0.40. However, it can be seen that all
the models overpredict log BB for compounds Y-G19 and
Y-G20. This is in accord with the findings of Abraham et
al.10 who considered them as outliers. They suggested that

Table 1sData and Results for Training Set

compound PSA/Å2 ClogP MlogP expt log BB DEC-I log BB DEC-II log BB

1 92.1 0.351 0.821 −1.42 −1.17 −1.07
2 78.9 0.952 0.786 −0.04 −0.88 −0.88
3 94.0 2.297 2.300 −2.00 −0.90 −0.84
4 73.5 4.046 3.569 −1.30 −0.33 −0.32
5 87.0 1.874 2.107 −1.06 −0.86 −0.77
6 39.0 0.743 3.066 0.11 −0.32 0.09
7 26.8 2.787 2.575 0.49 0.17 0.18
8 6.0 4.413 3.876 0.83 0.72 0.71
9 84.5 1.327 0.659 −1.23 −0.91 −0.98
10 139.2 0.844 1.258 −0.82 −1.79 −1.67
11 88.8 0.911 2.592 −1.17 −1.03 −0.71
12 73.5 2.282 1.940 −2.15 n.d.a n.d.a
13 83.9 2.747 1.642 −0.67 −0.68 −0.81
14 84.0 1.800 0.969 −0.66 −0.83 −0.92
15 78.0 3.637 2.484 −0.12 −0.46 −0.58
16 76.6 2.781 2.480 −0.18 −0.57 −0.56
17 104.4 1.784 1.960 −1.15 −1.13 −1.05
18 108.8 1.977 2.087 −1.57 −1.17 −1.09
19 135.8 1.880 2.400 −1.54 −1.58 −1.43
20 85.5 2.287 0.832 −1.12 −0.78 −0.97
21 79.5 4.124 2.253 −0.73 −0.41 −0.64
22 82.7 3.849 1.868 −0.27 −0.50 −0.75
23 85.7 3.234 1.760 −0.28 −0.64 −0.81
24 47.9 2.065 2.069 −0.46 −0.25 −0.21
25 45.2 4.004 3.228 −0.24 0.08 0.03
26 38.5 2.379 2.069 −0.02 −0.07 −0.07
27 39.1 4.259 3.272 0.69 0.21 0.12
28 40.0 4.165 2.627 0.44 0.18 0.00
29 39.2 5.759 3.902 0.14 0.43 0.23
30 54.9 5.029 4.332 0.22 0.09 0.08
butanone 22.7 0.834 0.655 −0.08 −0.07 −0.09
benzene 0.0 2.142 2.255 0.37 0.46 0.52
3-methylpentane 0.0 3.738 3.516 1.01 0.71 0.73
3-methylhexane 0.0 4.267 3.869 0.90 0.79 0.80
2-propanol 23.4 0.074 0.347 −0.15 −0.20 −0.15
2-methylpropanol 22.6 0.693 0.800 −0.17 −0.09 −0.06
2-methylpentane 0.0 3.738 3.516 0.97 0.71 0.73
2,2-dimethylbutane 0.0 3.608 3.516 1.04 0.69 0.73
1,1,1-trifluoro-2-chloroethane 0.0 1.714 2.081 0.08 0.40 0.49
1,1,1-trichloroethane 0.0 2.481 2.226 0.40 0.52 0.51
diethyl ether 11.3 0.870 0.800 0.00 0.10 0.10
enflurane 11.6 2.459 1.766 0.24 0.34 0.27
ethanol 24.4 −0.235 0.172 −0.16 −0.26 −0.19
fluroxene 10.7 1.765 1.257 0.13 0.25 0.19
halothane 0.0 2.447 2.604 0.35 0.51 0.58
heptane 0.0 4.397 3.869 0.81 0.81 0.80
hexane 0.0 3.868 3.516 0.80 0.73 0.73
isoflurane 11.0 2.999 1.766 0.42 0.43 0.27
methane 0.0 1.103 1.115 0.04 0.31 0.32
methylcyclopentane 0.0 3.314 3.124 0.93 0.64 0.67
nitrogen 54.2 n.d.b −2.272 0.03 n.d.a n.d.a
pentane 0.0 3.339 3.138 0.76 0.65 0.67
propanol 24.4 0.294 0.347 −0.16 −0.18 −0.16
propanone 22.7 0.305 0.202 −0.15 −0.15 −0.16
teflurane 0.0 2.007 2.419 0.27 0.44 0.55
toluene 0.0 2.641 2.608 0.37 0.54 0.59
trichloroethene 0.0 2.627 2.081 0.34 0.54 0.49

a Compounds not included in final training set for eqs 6 and 7. b ClogP could not calculate an accurate value for this compound. DEC-I is the predicted set
of values using eq 6 and DEC-II is the predicted set of values using eq 7.
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such outliers might be caused by factors such as inaccurate
data due to experimental difficulties or metabolic effects
not accounted for in log BB measurements.10 The fact that
our independently derived models also find large deviations
for these compounds, while treating the remainder quite
well, adds some weight to the argument to consider Y-G19
and Y-G20 as outliers. If this is done, for the remaining
five compounds, the mean absolute errors in the log BB
predictions are as follows: ACM-II: 0.02, log Pplus: 0.28,
DEC-I: 0.14, and DEC-II: 0.13. Thus, whether the outliers
are included or excluded, ACM-II is the best predictor for
this set, and DEC-I and DEC-II perform about as well as
each other and better than log Pplus.

Test Set 2sConsidering the results in Table 3, it can
be seen that compound 36 (amitryptyline) has a large
uncertainty in its experimental log BB value; however,
DEC-I and DEC-II predict log BB values within the given
range. In so doing, they perform better than LBC, which
underpredicts log BB, and NSO which predicts too high a
value. Calculating the mean absolute errors over com-
pounds 31-35, we obtain: LBC: 0.41; NSO: 0.52; DEC-I:
0.24; DEC-II: 0.23.

In this case, the equations based on PSA and calculated
log P perform substantially better than the more compu-

tationally expensive methods of Lombardo et al.13 and
Norinder et al.15

Discussion
It has been suggested by Lennernäs23 that purely passive

diffusion is universal for membranes with different physi-
ological functions and physicochemical properties. Thus,
the factors that determine a compound’s intestinal absorp-
tion should also, to some extent, model its BBB perme-
ability. Therefore, it is not surprising that PSA, which has
been found to be useful in modeling intestinal absorption
(see the preceding paper16 and references therein), together
with a direct estimate of lipophilicity, widely acknowledged
as an important factor in transport across membranes,24

should yield a predictive model for log BB. It would seem
from our results that, with this set of compounds, quanti-
ties such as molecular weight, molecular volume, or non-
polar surface area do not correlate strongly enough with

Table 2sData and Results from Test Set 1a

compound PSA/Å2 ClogP MlogP
expt

log BB
ACM-II
log BB

log Pplus
log BB

DEC-I
log BB

DEC-II
log BB

Y-G14 29.3 −0.068 0.652 −0.30 −0.31 −0.47 −0.30 −0.18
Y-G15 18.8 −0.338 0.969 −0.06 −0.01 −0.34 −0.09 0.02
Y-G16 43.1 −0.603 −0.316 −0.42 −0.41 −0.50 −0.59 −0.55
Y-G19 40.6 1.495 1.656 −1.30 −0.14 −0.15 −0.24 −0.17
Y-G20 46.7 0.110 0.855 −1.40 −0.57 −0.15 −0.53 −0.40
SKF89124 67.5 2.666 2.634 −0.43 −0.44 −0.91 −0.56 −0.40
SKF101468 44.1 1.999 2.605 0.25 0.24 −0.13 −0.11 −0.06

a ACM-II is the predicted set of values from eq 2, log Pplus is the predicted set of values from eq 3, DEC-I and DEC-II are the predicted set of values from
eq 6 and eq 7, respectively.

Table 3sData and Results from Test Set 2a

compound PSA/Å2 ClogP MlogP expt log BB
LBC

log BB
NSO

log BB
DEC-I
log BB

DEC-II
log BB

31 46.7 1.980 3.139 0.00 −0.14 −0.58 −0.25 −0.01
32 62.7 0.260 2.408 −0.34 −0.28 −1.11 −0.75 −0.37
33 76.1 1.907 3.446 −0.30 −0.46 −0.75 −0.70 −0.38
34 98.5 0.380 2.698 −1.34 −0.64 −0.99 −1.26 −0.83
35 120.4 −0.932 1.959 −1.82 −0.82 −1.35 −1.77 −1.28
36 5.4 4.641 4.369 0.76−0.98 0.28 1.03 0.76 0.80

a LBC is the predicted set of values from eq 4, NSO is the predicted set of values from model 2 of Norinder et al.,15 DEC-I and DEC-II are the predicted set
of values from eq 6 and eq 7, respectively.

Figure 2sStructures for test set 1.

Figure 3sStructures for test set 2.
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lipophilicity to be useful (when combined with PSA) for
modeling BBB penetration. An analysis of the 55 com-
pounds used in the training set in this paper bears this
out. The correlation coefficients, r, for the relationships
between ClogP and molecular weight, molecular volume,
and nonpolar surface area are 0.386, 0.468, and 0.599,
respectively.

It is interesting to note the similarity between the models
derived in this paper (DEC-I and DEC-II) and the log Pplus
equation of Abraham et al.10 In the latter (eq 3), the two
parameters, ΣR2

H and Σâ2
H, denote the solute hydrogen-

bond acidity and basicity, respectively. The fact that these
have negative coefficients while log P has a positive
coefficient accords with the expectation that membrane
permeation will be more facile for compounds that form
fewer (and weaker) hydrogen bonds with solvent and with
the observation that the brain is more lipophilic than the
blood, making lipophilic compounds more likely to pen-
etrate the brain. Similar findings were reported by Norinder
et al.15 who reported that high brain/blood partitioning was
favored by an absence of atoms capable of hydrogen
bonding together with high lipophilicity. The same may be
said for DEC-I and DEC-II, where better brain penetration
is predicted for compounds with high calculated log P and
low PSA (the polar surface area being an indication of a
compound’s capacity to form hydrogen bonds). In addition,
van de Waterbeemd et al.25 recently showed that, of a set
of 125 drugs, all those showing CNS activity could be found
within the ranges: 0 e PSA e 90; -1 e log D (pH 7.5) e
4 with the likelihood of CNS activity appearing to increase
with decreasing PSA and increasing log D. Thus, the
models derived in this paper would seem to be sensible
from a physiological point of view and are also in agreement
with insights from other models into the factors facilitating
blood-brain barrier penetration.

As with the model for intestinal absorption described
previously (see the preceding paper16 and references therein),
it is likely that the simple model described here is only

valid for passive diffusion processes across the BBB. There
are active transport systems for both influx and efflux in
the brain and compounds which are affected by these are
not likely to be well-predicted. Another factor influencing
BBB transport is the binding of drugs by plasma proteins.26

This too is not directly accounted for in the PSA/calculated
log P-based model, although plasma binding within a given
series may be correlated with log P.27

Finally, other experimental measures of blood-brain
barrier permeability are now becoming available. Eddy et
al.4 have reviewed various in vitro models, and Lombardo
et al.13 showed that, for a small set of 10 compounds, it
was possible to correlate permeability across a monolayer
composed of endothelial cells from bovine brain microves-
sels with free energy of solvation. Gratton et al.28 have
reported permeability-surface area measurements (de-
noted log PS) using a short-duration vascular perfusion
method for 18 compounds and correlated the values with
Abraham’s solute descriptors. A relatively new technique
for measuring brain penetration in vivo is microdialysis.29

This offers the potential for observing drug disposition
between the extracellular and intracellular space in the
brain, something not possible with traditional log BB
measurements.30 As more data emerge from these various
novel techniques, it will be interesting to see how well
computational techniques can adapt to predict new mea-
sures of blood-brain barrier penetration.

Conclusion

In summary, the equations (DEC-I and DEC-II) de-
scribed in this paper for log BB prediction show a good
predictive ability. Their utility is enhanced by the fact that
they comprise only two simple, noncorrelated variables,
values for which may be rapidly computed for almost any
structure. (As described in the preceding paper,16 PSA
values can be computed in about 10-15 s on a modern
workstation, and ClogP and MlogP calculations are very
fast.) The procedure for log BB estimation is fully auto-
mated, allowing the prescreening of virtual libraries and
other compound sets prior to synthesis or purchase. For
this reason, it should be of use in drug discovery projects
where blood-brain barrier penetration is an issue.
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